Riemannian Simplices and Triangulations

نویسندگان

  • Ramsay Dyer
  • Gert Vegter
  • Mathijs Wintraecken
چکیده

We study a natural intrinsic definition of geometric simplices in Riemannian manifolds of arbitrary finite dimension, and exploit these simplices to obtain criteria for triangulating compact Riemannian manifolds. These geometric simplices are defined using Karcher means. Given a finite set of vertices in a convex set on the manifold, the point that minimises the weighted sum of squared distances to the vertices is the Karcher mean relative to the weights. Using barycentric coordinates as the weights, we obtain a smooth map from the standard Euclidean simplex to the manifold. A Riemannian simplex is defined as the image of this barycentric coordinate map. In this work we articulate criteria that guarantee that the barycentric coordinatemap is a smooth embedding. If it is not, we say the Riemannian simplex is degenerate. Quality measures for the “thickness” or “fatness” of Euclidean simplices can be adapted to apply to these Riemannian simplices. For manifolds of dimension 2, the simplex is non-degenerate if it has a positive quality measure, as in the Euclidean case. However, when the dimension is greater than two, non-degeneracy can be guaranteed only when the quality exceeds a positive bound that depends on the size of the simplex and local bounds on the absolute values of the sectional curvatures of the manifold. An analysis of the geometry of non-degenerate Riemannian simplices leads to conditions which guarantee that a simplicial complex is homeomorphic to the manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This struc...

متن کامل

Enumerating Triangulations for Products of Two Simplices and for Arbitrary Configurations of Points

We propose algorithms to enumerate (1) classes of regular triangulations in respect of symmetry for products of two simplices and (2) all triangulations, regular or not, for arbitrary con gurations of points. There are many results for triangulations in two dimension, but little is known for higher dimensions. Both objects we enumerate in this paper are for general dimensions. Products of two s...

متن کامل

Enumerating Triangulations for Arbitrary Con gurations of Points and for Products of Two Simplices

We propose two algorithms to enumerate triangulations. These algorithms enumerate all triangulations, regular or not, for arbitrary con gurations of points in any dimensions. Our rst algorithm characterizes triangulations as maximal independent sets of the intersection graph. This graph has the maximal dimensional simplices of the given point con guration as vertices, and edges between two simp...

متن کامل

Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations

We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d ≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubb...

متن کامل

Extremal Properties for Dissections of Convex 3-Polytopes

A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices are among the vertices of the polytope. Triangulations are dissections that have the additional property that the set of all its simplices forms a simplicial complex. The size of a dissection is the number of d-simplices it contains. This paper compares triangulations of maximal size with dissecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015